Mercury operon regulation by the merR gene of the organomercurial resistance system of plasmid pDU1358.

نویسندگان

  • G Nucifora
  • L Chu
  • S Silver
  • T K Misra
چکیده

The structural basis for induction of the mercury resistance operon with inorganic mercury and with the organomercurial compound phenylmercuric acetate was addressed by DNA sequencing analysis and by lac fusion transcription experiments regulated by merR in trans from broad-spectrum-resistance plasmid pDU1358 (Hg2+ and phenylmercury responding). The lac fusion results were compared with those from a narrow-spectrum-resistance (Hg2+ responding but not phenylmercuric responding) operon and the pDU1358 merR deleted at the 3' end. The nucleotide sequence of the beginning region of the broad-spectrum mer operon of plasmid pDU1358 was determined, including that of the merR gene, the operator-promoter region, the merT and merP genes, and the first 60% of the merA gene. Comparison of this sequence with DNA sequences of narrow-spectrum mer operons from transposon Tn501 and plasmid R100 showed that a major difference occurred in the 3' 29 base pairs of the merR gene, resulting in unrelated C-terminal 10 amino acids. A hybrid mer operon consisting of the merR gene from pDU1358, a hybrid merA gene (determining mercuric reductase enzyme), and lacking the merB gene (determining phenylmercury lyase activity) was inducible by both phenylmercury and inorganic Hg2+. This shows that organomercurial lyase is not needed for induction by organomercurial compounds. A mutant form of pDU1358 merR missing the C-terminal 17 amino acids responded to inorganic Hg2+ but not to phenylmercury. Thus, the C-terminal region of the MerR protein of the pDU1358 mer operon is involved in the recognition of phenylmercury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular basis of bacterial resistance to organomercurial and inorganic mercuric salts.

Bacteria mediate resistance to organomercurial and inorganic mercuric salts by metabolic conversion to nontoxic elemental mercury, Hg(0). The genes responsible for mercury resistance are organized in the mer operon, and such operons are often found in plasmids that also bear drug resistance determinants. We have subcloned three of these mer genes, merR, merB, and merA, and have studied their pr...

متن کامل

Structural basis of the mercury(II)-mediated conformational switching of the dual-function transcriptional regulator MerR

The mer operon confers bacterial resistance to inorganic mercury (Hg(2+)) and organomercurials by encoding proteins involved in sensing, transport and detoxification of these cytotoxic agents. Expression of the mer operon is under tight control by the dual-function transcriptional regulator MerR. The metal-free, apo MerR binds to the mer operator/promoter region as a repressor to block transcri...

متن کامل

The central component of a metal-responsive genetic switch, the MerR

The central component of a metal-responsive genetic switch, the MerR metalloregulatory protein, is one of the first examples of an mtracellular heavy metal receptor [l]. The merR gene product mediates the induction of the mercury resistance phenotype in bacteria [21, and resistant cells respond to subtoxic Hg(I1) levels (10 *6 -lo8 M) with transcriptional activation of the mer operon [31. Genet...

متن کامل

In vivo DNA-protein interactions at the divergent mercury resistance (mer) promoters. I. Metalloregulatory protein MerR mutants.

Regulation of transcriptional initiation of the Tn21 mercury resistance (mer) operon occurs at the divergent promoter region lying between the structural genes (merTPCAD) and a regulatory gene (merR). During repression, both promoters are negatively regulated by MerR bound to a dyadic operator located between the -10 and -35 hexamers of PTPCAD. Upon Hg(II) induction, MerR activates transcriptio...

متن کامل

Analysis of mer Gene Subclasses within Bacterial Communities in Soils and Sediments Resolved by Fluorescent-PCR-Restriction Fragment Length Polymorphism Profiling.

Bacterial mer (mercury resistance) gene subclasses in mercury-polluted and pristine natural environments have been profiled by Fluorescent-PCR-restriction fragment length polymorphism (FluRFLP). For FluRFLP, PCR products were amplified from individual mer operons in mercury-resistant bacteria and from DNA isolated directly from bacteria in soil and sediment samples. The primers used to amplify ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 171 8  شماره 

صفحات  -

تاریخ انتشار 1989